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gravity waves 

By STEVE ELGARt AND R. T. GUZA 
Scripps Institution of Oceanography, Mail Code A-022, University of California, 

La Jolla. California 92093 

(Received 15 April 1985) 

Aspects of the nonlinear dynamics of waves shoaling between 9 and 1 m water 
depths are elucidated via the bispectrum. Bispectral-signal levels are generally high, 
indicating significant nonlinear coupling. In 9 m depth, the biphases of interactions 
involving frequencies at, and higher than, the peak of the energy spectra are 
suggestive of Stokes-like nonlinearities (Hasselman, Munk & MacDonald 1963). 
Further shoaling gradually modifies these biphases to values consistent with a wave 
profile that is pitched shoreward, relative to a vertical axis. Bicoherence and biphase 
observations with a double-peaked (swell and wind-wave) power spectrum provide 
evidence for excitation of modes at intermediate frequencies via difference inter- 
actions, as well as the sum interactions responsible for harmonic growth. Shoreward- 
propagating low-frequency (surf-beat) energy is shown to have statistically signi- 
ficant coupling to higher-frequency modes within the power-spectral peak. In 18 m 
depth, the biphase of these interactions is close to 180°, a value consistent with the 
classical concept of bound long waves. In shallower water, however, substantial 
biphase evolution occurs, and there is no longer a unique phase relationship between 
surf beat and the envelope of high-frequency waves. The contributions to sea- 
surface-elevation skewness and asymmetry (with respect to a vertical axis) from 
interactions among various wave triads are given by the real and imaginary parts 
of the bispectrum, respectively. In very shallow water, coupling between surf beat 
and higher-frequency waves results in a skewness with sign opposite to, and about 
40% of the magnitude of, the skewness resulting from interactions between the 
power-spectral-peak frequency and higher frequencies. 

1. Introduction 
Since its introduction more than twenty years ago (Hasselman, Munk & MacDonald 

1963), bispectral analysis has been utilized by many investigators to study nonlinear 
phenomena. Hasselman et al. (1963) obtained good agreement between observations 
of bispectra of ocean-surface gravity waves in intermediate water depth (1 1 m) and 
predictions based on Stokes-like, non-resonant , nonlinear interactions. Nonlinearities 
in a wide range of other phenomena have been studied (with varying degrees of 
success) with bispectral techniques since the seminal paper of Hasselman et al. (1963), 
for example, economic time series (Godfrey 1965), brain-wave emissions (Barnett 
et al. 1971 ; Huber et al. 1971), and machinery vibrations (Sato, Sasaki & Taketani 
1980, and references therein). Van Atta and coworkers (e.g. Yeh & Van Atta 1973; 
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Lii, Rosenblatt & Van Atta 1976; Helland, Van Atta & Stegun 1977; Van Atta 1979) 
have investigated the nonlinear transfer of energy in turbulent flows using bispectral 
methods. Nonlinear interactions between modes of density fluctuations in plasmas 
have been studied with bispectral techniques by Kim & Powers (1978,1979) and Kim 
et al. (1980). 

Simultaneous with these data-analysis applications, the mathematical and statis- 
tical properties of the bispectrum have been developed. Brillinger (1964, Rosenblatt 
& Van Ness (1965), and Brillinger & Rosenblatt (1966a, b) give some of the statistical 
properties of higher-order spectra. Haubrich (1065) and Hinnich & Clay (1968), as 
well as Kim & Powers (1979), discuss the statistics of bicoherence. 

The present study returns to the question of ocean gravity waves, but considers 
waves in water depths between 9 m and 1 m. Waves in this shoaling region are 
particularly well suited to analysis with bispectral techniques for several reasons, the 
most important being that bispectral-signal levels are relatively high. The statistical 
variability of bispectra is such that many degrees of freedom (relative to one- 
dimensional spectra) are required for statistical stability, with the required degrees 
of freedom generally increasing with decreased strength of the bispectral signal. This 
constraint has led McComas & Briscoe (1980) to conclude that bispectral analysis of 
interactions between certain internal wave frequencies would be fruitless. On the 
other hand, waves in the shoaling region are of short enough timescale that many 
degrees of freedom can be obtained without losing stationarity. This combination of 
many degrees of freedom and high bispectral-signal levels leads to statistical stability 
of the bispectral estimates in the present study. 

Preliminary definitions and properties of bispectra are reviewed in $2, and the field 
experiment is described in $3. Observations of bispectra for several different 
shoaling-wave power spectra are discussed in detail in 3 4, where phenomena 
undetectable with one-dimensional spectral analysis are presented. Data with 
broad-band power spectra show some surprising similarities to narrow-band data in 
certain aspects of bispectral evolution (34. l ) ,  in particular the biphase. Similarities 
are also evident in the evolution of sea-surface-elevation skewness and asymmetry 
(about a vertical axis). The contributions to the skewness and asymmetry from 
different wave triads are examined with the bispectrum. Evidence of excitation of 
modes via difference interactions as well as sum interactions is observed in a data 
set with a double-peaked power spectrum. Low-frequency motions (surf beat) are 
shown to be nonlinearly coupled to energy at frequencies closely spaced within the 
power-spectral peak ($4.2), as suggested by the classical notion of surf beat (Munk 
1949). However, biphase analysis shows that the surf-beat modes in the shoaling 
region are not 180" out of phase with the envelope of higher-frequency waves. 
Cross-bispectra are used to show that surf-beat motions on the beach face (swash) 
are nonlinearly coupled to higher-frequency modes seaward of the surf zone (34.3). 

2. Definitions and properties of the bispectrum 
Let a stationary random process be represented as 

N 

n - 1  
(2.1) 

where k is the wavenumber given by the dispersion relationship, w is the radian 
frequency, the subscript ?z is a frequency (modal) index, an asterisk indicates complex 
conjugation, and the An are complex Fourier coefficients. The auto-bispectrum is 

a(x,  t )  = A ,  &(kn z-w,t) +A,* e-i(knz-wn t )  
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formally defined as the Fourier transform of the third-order correlation function of 
the time series (Hasselman et at?. 1963) 
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2 0 3  

~ ( w , , w , )  = (&) I_, S_mm 5(T1, T 2 )  e-iu171-iu 2 T 2 dT1 dT2, (2.2) 

where 8 ( 7 1 , ~ 2 )  = E [ ~ ( t ) q ( t + ~ , )  W + M  (2.3) 

with E [  ]the expected-value, or average, operator. The digital bispectrum, appropriate 
for discretely sampled data, is (Haubrich 1965; or see Kim BE Powers 1979 for a 
complete derivation) 

Similarly, the power spectrum is dehed  here as 

B(%, wj) = E[AWk 4, 4k+u, l .  (2.4) 

W k )  = iErAuk q. (2.5) 

From (2.4) the bispectrum is zero if the average triple product of Fourier 
coefficients is zero. This occurs if the modes are independent of each other, i.e. for 
the random phase relationships between Fourier modes in a linear wave field. Using 
symmetry properties, the bispectrum can be uniquely described by its values in a 
bi-frequency octant. For a digital time series with Nyquist frequency w N ,  the 
bispectrum is uniquely defined within a triangle in (w,, w,)-space with vertices a t  

The well-known result that the mean cube of the time series is related to the real 
part of the bispectrum is obtained by forming E [ v ( ~ ) ~ ]  from the expected value of 
the cube of the right-hand side of (2.1.): 

(w,  = 0, w2 = 0) ,  (w,  = wNI2,  w2 = w N I 2 ) ,  and (wl = wN,  w2 = 0). 

E [ ~ ( t ) ~ l  = 12 C C Re{B(wn,w1)}+6 C Re{B(wn,wn)}, (2.6) 
n l  n 

where n > I and Re { } signifies the real part. The skewness is obtained from (2.6) by 
normalizing by E[q(t)2p. A quantity analogous to skewness, hereinafter called the 
asymmetry, is defined here as 

Im{B(wn,w,)}+6 C Im{B(w,,w,)} 
n 

where n > 1 and Im { } signifies the imaginary part. It can be shown that the 
asymmetry is the skewness of the Hilbert transform of the time series, and is also 
related to the skewness of the slopes of the time series, 

CIA + 6 C w, on wZn Im {B(wn, 0,)) +terms of order -, (2.8) 

where n > 1 .  The expression for E [ ( a q / a ~ ) ~ ]  is the same as (2.8) with wi replaced 

It is convenient to recast the bispectrum into its normalized magnitude and phase, 

n at 

by ki- 

called the bicoherence and biphase, given respectively by (Kim & Powers 1979) 

(2.10) 
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Writing the Fourier coefficients as a magnitude and phase, 
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A ,  = I A,, I ePien, 

the biphase is (Kim et al. 1980) 

(2.11) 

PCwz, 0 3 )  = ow, + owl - fLol+wj. (2.12) 

For this bicoherence normalization (2.9), 0 6 b < 1 .  Various other combinations of 
the A, have been used to normalize the bicoherence. If, however, the denominator 
of (2.9) is replaced with (Haubrich 1965; and others) E[I AU1 1 2 ]  E[I A,,,* 12] E[I Awl+w2 12], 
it  is no longer true that b < 1.  For the data considered in the present study, such 
a normalization led to  values of b > 2.5. 

For a finite-length time series even a truly Gaussian process will have a non-zero 
bispectrum. A 95% significance level on zero bicoherence is given by Haubrich 
(1965) as 

bt5% 2 61d.o.f. (2.13) 

where d.0.f. is the number of degrees of freedom. Preliminary numerical simulations 
similar to Haubrich (1965) indicate that the 95 % significance levels for the normal- 
ization given in (2.9) are about $ the value given by (2.13), which yields a value closer 
to the 99 yo significance level for bicoherences calculated with (2.9). Equation (2.13) 
is used below, and is a conservative estimate of 95 yo significance levels. The precise 
values of bicoherence significance levels are not important here. Confidence limits on 
the estimates of bicoherence depend on the true value of the bicoherence, but i t  has 
been shown that the variance of bicoherence estimates is less than 2ld.o.f. (Hinich 
6 Clay 1968 ; Kim & Powers 1979). Confidence levels for estimates of biphase depend 
on bicoherence values and the number of degrees of freedom. Biphase estimates for 
frequency pairs with very low bicoherence are unstable, and tend to be randomly 
distributed between --A and K, while for frequency pairs with high bicoherence levels 
the estimates of biphase are stable. Analogous to phase estimates from standard 
cross-spectra (e.g. Jenkins & Watts 1968, figure 9-3), the stability of biphase estimates 
at fixed bicoherence must increase with increasing number of degrees of freedom. 
However, quantitative estimates of biphase confidence levels are not available. 
Although some of the data analysed below have only moderate (but statistically 
significant) bicoherence values, the biphases are quite stable, apparently owing to  the 
large number of degrees of freedom (typically 150-300). 

For a 3-wave system, Kim & Powers (1979) show that b2(w,,w,) represents the 
fraction of power at frequency wz + w j  due to quadratic coupling of the 3 modes (wz,  
w3, and w i + w j ) .  No such simple interpretation for the bicoherence is possible in a 
broad-band process where a particular mode may be simultaneously involved in many 
interactions (McComas & Briscoe 1980). Nevertheless, the bicoherence does give an 
indication of the relative degree of phase coupling between triads of waves, with b = 0 
for random phase relationships, and b = 1 for a maximum amount of coupling. Work 
in progress concerns the statistical properties (e.g. biphase confidence limits) and 
physical significance of bispectral quantities in broad-band processes. 

3. Experiment and data reduction 
Most of the field data discussed were obtained at Santa Barbara, California, during 

the Nearshore Sediment Transport Study experiment conducted in January and 
February 1980 (Gable 1981). The observations used in the present study were 
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FIGURE 1.  Measured beach profile and instrument locations along a line perpendicular to the beach. 
Circles are pressure gauges, squares are bi-directional current meters, and a runup meter lies on 
the beach face. 

obtained primarily from near-bottom-mounted pressure sensors, located along a line 
perpendicular to the beach, from approximately 9 m depth to less than 1 m depth 
(300 m horizontal distance). Marsh McBirney electromagnetic current meters and a 
runup meter on the beach face were also used. A typical beach profile and sensor 
locations are shown in figure 1. 

The gauges were sampled at 2 Hz for up to 5 h daily. Bulk statistics (variance, 
frequency of the spectral peak, etc.) and certain wave-group statistics (Elgar, Guza 
t Seymour 1984) were checked for stationarity. Data sets with any indication of 
nonstationarity were rejected. The selected data were processed by breaking the 
entire record into consecutive sections of 512 s each, resulting in a frequency 
resolution for the raw data of 0.001 95 Hz. Bottom pressures measured in depths less 
than 6 m were converted to sea-surface elevation using finite-depth linear theory. 
Measurements in deeper water were not corrected for depth attenuation because the 
correction unrealistically amplifies small noise levels near the high-frequency cutoff 
(f= 0.4 Hz). Owing to the normalization in (2.9) and (2.10), and the fact that the 
depth-correction coefficients do not vary significantly within the frequency bands 
used here, there is negligible difference between the bicoherence and biphase of 
bottom pressure and sea-surface elevation. Statistical stability of bispectral estimates 
is gained by averaging bispectral values over 5 x 5 squares (or triangles along the 
diagonals) (except the 12 February data, figure 11, where 10 x 10 squares are used) 
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in ( fi, f2)-space, where f = 2xw, and ensemble-averaging over many 512 s records. 
Similarly, power-spectral estimates are smoothed by merging 5 frequency bands and 
ensemble averaging over the collection of 512 s records. The final spectral and 
bispectral resolution is 0.0098 Hz (except 12 February, where the resolution is 
0.0195 Hz). The number of degrees of freedom in the bispectra discussed here ranged 
from 160 to 310, mainly reflecting differences in the number of 512 s pieces available 
for averaging. 

4. Observations of bispectra 
This section describes the bispectra of shoaling waves observed in the field. The 

three data sets that will be discussed in detail have approximately the same total 
variance, but very different power spectra. First, interactions involving the swell and 
wind-wave bands (0.04 < f < 0.4 Hz) will be discussed, and theninteractionsinvolving 
the infragravity wave, or low-frequency band (f < 0.04 Hz), will be examined. 

4.1. Swell and wind-wave frequencies (f > 0.04 Hz) 
The 2 February wave field is dominated by swell (f - 0.06 Hz) from a distant storm. 
The significant wave height (defined here as 4 times the sea-surface standard 
deviation) in 4 m depth is 65 cm, and there is a very small peak at  the first harmonic 
( f =  0.12 Hz, figure 2a). As the waves shoal, the power in the first and higher- 
harmonic (f - 0.18, 0.24, 0.30 Hz) peaks increases (figures 2b-f, upper panels). The 
growth of these harmonics is not predicted by any linear theory, but is well modelled 
by the nonlinear Boussinesq-type equations described in Freilich & Guza (1984) (see 
also figure 3 of Elgar & Guza 1985~) .  The bicoherence spectrum at the deepest sensor 
(figure 2 a) indicates nonlinear coupling between modes within the power-spectral 
peak and modes at twice the peak’s frequency. The convention is that the interactions 
involve fl, f2, and f,, where f3 =f l+ f,. For example, b(0.06, 0.06) = 0.30, indicating 
a self-self wave interaction at f = 0.06 Hz coupled to energy at f = 0.12 Hz. As the 
waves shoal, the excitation of phase-coupled harmonics is vividly reflected in the 
bicoherence. In 4 m depth (figure 2c), the bicoherence indicates stronger (than in 
deeper water) coupling within the peak (b(0.06,0.06) = 0.49), and also coupling 
between the peak and its first two harmonics (b(0.06,0.12) = 0.28; 
b(0.06,0.18) = 0.14). In shallower water nonlinear coupling spreads not only to 
encompass interactions between the power-spectral peak and its higher harmonics, 
but also to interactions between the harmonics themselves. For example, in 2 m 
depth (figure 2e) b(0.06,0.24) = 0.16; b(0.12,0.12) = 0.43; b(0.12,0.18) = 0.41; 
b(0.18,O. 18) = 0.33. Although these bispectral calculations indicate only that non- 
linear coupling is occurring, and not the direction of energy flow (i.e. which modes 
are receiving energy), the sequence of energy spectra in figure 2 shows that energy 
is being received by high frequencies. 

Along with the increase in bicoherence shown in figure 2, there is substantial 
biphase evolution as the waves shoal (figures 3 and 4). As mentioned in $3, for 
frequency pairs with very low values of bicoherence, the biphase is undefined, and 
can take on any value between -x and x. In order to visualize the biphase values 
in the wind-wave frequency band, it is convenient to view the 3-dimensional 
perspective plots from a different angle than the bicoherence plots. Thus, figures 3, 
7, and 11 are rotated, enabling a view of the wind-wave band frequency pairs that 
is unobstructed by the wall of low-frequency biphase noise. The evolution of biphases 
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FIQURE 2. Power spectra and contours of bicoherence for the 2 February data at various depths. 
The power spectra (bars indicate 95 yo confidence levels) are immediately above the corresponding 
bicoherence plots. The minimum bicohrence-contour level is b = 0.1, with additional contours every 
0.05. There are 310 degrees of freedom (d.0.f.) and the 95 yo significance level (according to (2.13)) 
for zero bicoherence is b = 0.14. Depths are (a) h = 9.0 m, (b) 6.4 m, (c) 3.9 m, (d) 2.7 m, (e) 2.0 m, 
cf)  1.3 m. 

for a few selected frequency pairs (those pairs with the highest observed values of bi- 
coherence, combinations of the power-spectral peak and its harmonics) are displayed 
in figure 4. 

Features of the self-self interaction at the spectral peak in the 9 m depth data are 
consistent with Stokes-type nonlinearities. If the Stokes wave is represented as 

(4.1) v ( Z , t )  = c, cose+c, cos2e+c, cOS38+ ... , 
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n 

0 

--n 

--n :: 
FIQURE 3. Biphase for the 2 February data set. The arrows indicate the plateau of approximately 

equal values of biphase. (a) h = 9.0 m, (b) 3.9 m, (c) 2.7 m, (d) 2.0 m. 

where the C, are functions of the amplitude, wavenumber and depth, and 8 = kx--ot, 
then the bispectrum is 

(4.2) 

where [W, 91 denotes the real and imaginary parts of the bispectrum. Thus, for 
all harmonic frequencies the bicoherence is 1 and the biphase is zero. Directional 
spreading in the primary frequency band decreases the bicoherence (Hasselman et 
al. 1963), as does the presence of uncoupled waves at  harmonic frequencies. As shown 
in figure 4, in 9 m depth, the two lowest-order interactions [( f,, f,), ( fp, 2fp)], where 
fp is the frequency of the power-spectral peak, have biphase of about - 15", and two 
of the other interactions are also within 25" of the Stokes biphase (p = 0"). Since only 
the lowest-order interactions have significant bicoherence and substantial biphase 
stability, the 9 m data are interpreted as qualitatively consistent with Stokes-like 
nonlinearities. A similar conclusion, based on an analysis which included directional 
effects in 11 m depth, was reached by Hasselman et al. (1963). 

As the waves shoal, the biphases of harmonic interactions tend towards /3 = -in 
(figure 4). The biphase perspective plots (figure 3) show that many frequencies, 
not just the harmonics (figure 4) are nonlinearly coupled, and have biphase values 
that approach p = -inX. In 4 m depth the harmonic-frequency pairs have similar 

~ S t o k e s ( %  @ j )  = [Ct c, G+,, 01, 
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FIQURE 4. Biphase versu8 depth for selected frequency pairs for the 2 February data set. (1, f); 
0, (f, 21) ; + , cf, 3f); x , (f, 4f); +, (2f, 2f); 0, (2f, 3f), where f = 0.06 Hz corresponds to the 
power-spectral-peak frequency. 

values of biphase (/3 x -50°, figure 4). As the water depth decreases, the region of 
approximately constant biphase increases to encompass more and more frequency 
pairs, as shown by the increasing area of the plateau of approximately equal biphase 
values in figure 3. The values of almost all biphases steadily approaches /3 = -in. 

Since the biphase depends on the ratio of imaginary to real parts of the bispectrum, 
which are related to skewness and asymmetry, respectively, it is not surprising that 
the biphase is related to the wave's shape. Masuda & Kuo (1981) showed that a 
primary and its first harmonic with zero biphase is associated with a wave with sharp 
peaks and broad, flat troughs, but with symmetry about a vertical axis, as in a Stokes 
wave. On the other hand, a biphase of --in is associated with a wave pitched forward 
(i.e. vertical asymmetry), but symmetrical with respect to a horizontal axis (zero 
skewness). The observed evolution of biphase values is consistent with the visual 
observation that as waves shoal they evolve from a slightly peaked, nearly sinusoidal 
shape in deep water to a shape characterized by a steep forward face and a relatively 
gently sloping rear face (figure 5).  In very shallow water (figure 5 e ,  for example) the 
data are suggestive of a sawtooth shape. It is readily shown that the bispectrum of 
a sawtooth is 

(4.3) Bsawtooth ( i d  = [o, (% '2'+iY) -8  1 ' 
so the sawtooth biphase is /3(i,j) = -in. 

In contrast to the 2 February data, the 15 February data (figures 6 and 7) have 
quite broad-band energy spectra. The significant wave height in 4 m depth for the 
15 February data is 65 cm, the same as the 2 February data. The 15 February energy 
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FIGURE 5. Sea-surface elevation verms time for a short section (about 9 0 s )  of the 2 February 

data set, (a) h = 8.7 m, ( b )  3.6 m, (c) 2.9 m, (d) 2.4 m, ( e )  1.7 m, (f) 1.0 m. 

spectra show very little evolution as the wave field shoals (figure 6, upper panels). 
The increase in high-frequency energy (f > 0.2 Hz) at the 4 m depth (figure 6c)  is 
an artifact of not correcting the two deeper measurements (figure 6a and b )  for 
depth attenuation. The bicoherences (figure 6) also show little structural evolution, 
although the average level of bicoherence does steadily increase from near zero in 9 m 
depth (figure 6a)  to about b = 0.15 in 0.9 m depth (figure 6 8 .  Even though this value 
of bicoherence is not large, it indicates that significant nonlinear coupling is occurring. 
In  contrast to  the sharp peaks and steep valleys of the bicoherence spectra for the 
narrow-band 2 February data (figure 2), the 15 February data evolve from near-zero 
bicoherence values to low (but non-zero) values broadly spread over most of the 
wind-wave frequency band pairs (figure 6). 

Despite the radically different evolution of power spectra and bicoherence for the 
2 February (figure 2) and 15 February (figure 6) data sets, the evolution of biphase 
is remarkably similar (compare figures 3 and 7). The 15 February data have no 
statistically significant equivalent of the Stokes-like interaction within the narrow 
spectral peak of the 2 February data in 9 m depth, but by the shallower sensors 
(figures 7c and d )  no features distinguish the biphase spectra of the broad-band data 
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FIQURE 6. Power spectra and contours of bicoherence for the 15 February data set, with the same 
formatasfigure2:d.o.f. = 160,andthe95% significancelevel ((2.13))forzerobicoherenceisb = 0.19. 
Depths are (a) h = 8.7 m, (b)  6.0 m, (c) 3.5 m, (d) 2.2 m, (e) 1.6 rn, (f) 0.9 m. 

(figure 7) from the narrow-band data (figure 3). The similar biphases are not surprising 
considering that the shapes of waves in very shallow water are qualitatively similar 
for broad and narrow power spectra, i.e. steep front faces and flat rear slopes 
(figures 5 and 8). 

Although the bicoherence spectra for the 2 February and 15 February data sets 
are quite different in structure, various integrals of the bispectrum of each data set 
are similar. In particular, the skewness (2.6) and asymmetry (2.7) of each data set 
(band-pass filtered between f = 0.04 and f = 0.4 Hz) have similar evolution and 
values, as shown in figure 9. The skewness is relatively low in 9 m depth, increases 
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FIQURE 7. Biphase for the 15 February data set. The arrows indicate the plateau of approximately 
equal values of biphase. (a) h = 8.7 m, ( b )  3.5 m, (c) 2.2 m, (d )  1.6 m. 

to a maximum in about 2 m depth, and then decreases to near zero in even shallower 
water. The asymmetry has a near-zero value in 9 m, but increases (in absolute value, 
asymmetry is negative for shoaling waves in the coordinate frame used here) as the 
waves shoal, reaching a maximum value slightly shoreward of the skewness maximum. 
Similar structure of the skewness and asymmetry evolution was observed in several 
other data sets, with various power-spectral shapes, and with a wide range of wave 
heights. The slight decrease in asymmetry (figure 9) in very shallow water occurs a t  
depths where substantial dissipation (wave breaking, loosely defined here as occur- 
ring a t  the depth where the linear energy flux is less than 85% of the energy flux 
measured in 4 m depth) begins to occur (depth = 1 .O m and 1.5 m for 2 February and 
15 February, respectively). 

The contributions to  skewness and asymmetry from each frequency pair (i.e. the 
real and imaginary parts of the bispectrum) a t  about 2.5 m depth are shown in 
figure 10. For both data sets most bispectral energy is concentrated near those 
frequency pairs with the highest bicoherences. Although for the narrow-band 
2 February data relatively few triads are contributing to  the bispectrum, while the 
broad-band data of 15 February are characterized by interactions spread over many 
frequency pairs within the energetic part of the spectrum, the net band-passed 
skewness and asymmetry for both data sets are quite similar (figure 9). 
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Time - 
FIGURE 8. Sea-surface elevation verma time for a short section (about 90s)  of the 15 February 

data set. (a) h = 8.4 m, (b )  3.2 m, (c) 2.5 m, (d )  1.9 m, (e) 1.3 m, (f) 0.6 m. 

For both data sets (figure lo), the contributions from the frequency pairs with 
low-frequency components [e.g. b(0.06,O.Ol)l is opposite in sign to the contributions 
from the high-frequency pairs, and would reduce the skewness shown in figure 9 by 
3WO %. The asymmetry (figure 9) would be reduced by about 15-30 %. The reduction 
in magnitude of skewness and asymmetry due to interactions involving very low 
frequencies is consistent with the observed values of biphase (discussed in §4.2), 
7c > /3 > in. Biphases in this quadrant have bispectra with negative real and positive 
imaginary parts. 

The bispectral calculations for the narrow-band 2 February data are con- 
sistent with the nonlinear transfer of energy from the power-spectral-peak frequency 
to higher frequencies via (quadratic) sum interactions. On the other hand, the 
12 February data (figure 11,  significant wave height in 4 m depth is 56 cm) have 
double-peaked power spectra with a narrow-swell peak at f = 0.07 Hz and a broad 
sea peak above f = 0.24 Hz, and suggest that excitation of modes through difference 
interactions can also be important. The bicoherence spectra for 12 February 
(figure 11) are consistent with nonlinear coupling within the lower-frequency 
swell peak (b(0.07, 0.07) = 0.24 at 2.1 m depth) transferring energy through sum 
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interactions to modes in the spectral valley (f - 0.14 Hz). Simultaneously, there is 
coupling between the low-frequency swell peak and the high-frequency sea peak (e.g. 
b(0.05,0.19) = 0.13 at 2.1 m depth), consistent with a difference interaction between 
f = 0.24 and f = 0.05 Hz transferring energy into the spectral valley at  f = 0.19 Hz. 
By 1.3 m depth (figure 1 1 c) the spectral valley and the high-frequency peak are almost 
equal in energy, and the sea-swell interactions are weaker than in deeper water 
(b(0.05, 0.19) = 0.04 at 1.3 m depth). The large increase in energy in the spectral 
valley, and decrease in energy in the sea peak are not predicted by linear theory. Finally, 
in very shallow water, after some breaking has occurred (0.8 m depth, figure l l d ) ,  
the spectral valley has disappeared, and the energy spectrum is unimodal (above 
f = 0.04 Hz). The biphase spectra of the 12 February data (figure 11)  differ from those 
of the 2 February (figure 3) and 15 February (figure 7)  data. As shown in figure 11,  
in the regions of non-zero bicoherence there are three distinct regimes of biphase. The 
frequency pairs within the low-frequency swell peak (f = 0.07 Hz) undergoing sum 
interactions have biphases similar to the previously described data sets, with, for 
example, p(0.07, 0.07) evolving from near zero to approximately -!gt as the waves 
progress from 9 m to 1 m depth (PI in figure 11) .  Sum interactions between sea and 
swell show similar biphases (p, in figure 11). On the other hand, as shown in figure 11 
(pz) and figure 12, the frequency pairs corresponding to difference interactions 
between sea'and swell peaks ((0.05,0.19), for example) have biphase values that 
evolve from close to x in deeper water to about 140' just prior to breaking. The biphase 
values measured in 6 m depth (figure 12) are consistent with the biphase of x for a 
bound wave produced by a Stokes-like difference interaction. However, similar to the 
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FIGURE 10. Real and -imaginary parts of the bispectrum. The values are normalized such that 
the volume under the surfaces yields the skewness or asymmetry. The linear vertical scales are 
arbitrary units, used to show relative scale only. (a) Real part 2 February, h = 2.7 m; (b) real 
part, 15 February, h = 2.2 m; (c) -imaginary part, 2 February, h = 2.7 m;  (d )  -imaginary part, 
15 February, h = 2.2 m. 

sum interactions, the biphase evolves away from the Stokes value (figure 12). It is 
interesting to note that the real part of the bispectrum for the sea-swell difference 
interactions is negative, thus tending to cancel the positive contributions to skewness 
from the frequency pairs within the swell peak, similar to the effects of very low 
frequencies (f < 0.04) mentioned above. By the shallowest sensor (figure 11 d) ,  in the 
zone of wave breaking, the biphases of those frequency pairs previously associated 
with sea-swell difference interactions have changed substantially, and resemble the 
biphases of the frequency pairs within the low-frequency swell peak. 

4.2. Infragravity frequencies ( f  < 0.04 Hz) 
The discussion above concentrated on interactions within the swell and wind-wave 
frequency band of the energy spectrum. However, there is considerable interest in 
the infragravity wave band (f < 0.04 Hz), evident in the shallower-wafer energy 
spectra of all the data sets discussed above (figures 2, 6, 11 and also 15). A detailed 
study of the spatial structure and energy levels of the low-frequency motions 
observed in this experiment can be found in Guza & Thornton (1985). It has been 
suggested that energy at infragravity wave frequencies is nonlinearly coupled to the 
wind-wave frequency band. Specifically, it  was shown by Longuet-Higgins & Stewart 
(1962, 1964) that the beating of two neighbouring high-frequency waves produces a 
bound, low-frequency long wave that is R out of phase with the envelope of the 
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high-frequency waves. The biphase of the wave triad with frequencies w,, om, and 
u , - ~  = w,-wm is /3(~, -~,  wm) = R .  

In a field experiment with limited (16) degrees of freedom, Suhayda (1972, 1974) 
did not observe significant bicoherence (bob% > 0.6) values for very shallow-water 
interactions involving surf beat. There are two primary differences between Suhayda’s 
work and the present results, which do show statistically significant nonlinear 
coupling. First, there are an order of magnitude more degrees of freedom in the 
present work, thereby considerably reducing the bicoherence significance levels. The 
second refinement is the separation of the surf-beat signal into shoreward- and 
seaward-propagating components. Observations on a wide variety of beaches suggest 
that surf beat is a standing wave (or at least has a significant seaward-propagating 
component) in the cross-shore direction (Suhayda 1972,1974; Guza & Thornton 1985 
and references therein). Recall that non-zero bispectral levels require non-random 
phase relationships between the interacting waves. However, when averaged over a 
finite-width frequency band, the low-frequency reflected waves will have phase 
relationships relative to their incoming counterparts that tend to decrease bispectral 
levels. Indeed, for the approximately 0.01 Hz bandwidth used here, the range of 
wavelengths within the band f = 0.01 to f = 0.02 Hz is, very roughly, 440-220 m in 
2 m depth, resulting in widely varying phase relationships between incoming and 
reflected waves across the frequency band. Consequently, removing the reflected 
waves from the time series should increase the bicoherence of frequency pairs 
involving low-frequency modes. The colocated pressure-gauge-current-meter pairs 
(figure 1) were used to decompose crudely the records into incoming and outgoing 
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FIQURE 13. Bicoherence versus depth for typical frequency pairs which include a low-frequency 
mode. 0 ,  both incoming and reflected low-frequency energy included in the record; f record with 
reflected energy below f = 0.04 Hz removed; ----, 95% significance level ((2.13)) for zero 
bicoherence. (a) 2 February (0.01, 0.06); ( b )  4 February (0.02, 0.05); (c) 4 February (0.02, 0.06); 
(d) 19 November (0.01, 0.06). 

wa,ves for f < 0.04 Hz (Guza, Thornton & Holman 1984). Bispectral calculations were 
&formed on records with only incoming energy below f = 0.04 Hz, but no changes 
above f = 0.04 Hz. Comparisons of bicoherence for frequency pairs (fA,f,), where fA 
is a low-frequency dfA x 0.01, 0.02 Hz) mode and fp is the frequency of the 
power-spectral peak, were made between records with and without reflected surf-beat 
energy. As expected, removing the long-wave reflections increased the bicoherence 
levels of almost all the pertinent frequency pairs (figure 13a-c), typically by about 
25 yo, but by as much as 100 Yo in some cases. Bicoherences for records with only 
outgoing energy belowf = 0.04 Hz (not shown) were substantially lower than all the 
corresponding values shown in figure 13(a-c), and lower than three of the six values 
shown in figure 13d. It is quite clear (figure 13) that statistically significant nonlinear 
coupling occurs between neighbouring frequencies within the power-spectral peak, 
and their difference frequency. The 19 November data (figure 13d, obtained at Torrey 
Pines, California; beach slope = 0.02) are included to demonstrate that this type of 
nonlinear interaction occurs on different beaches. 
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In a Stokes-type expansion (Longuet-Higgins & Stewart 1962, 1964) the biphase 
of these surf-beat-type interactions is B = n. As shown in figure 14, at the deepest 
sensor locations where reflections could be removed, the observed biphase is 
somewhat different than 180". It is important to note that /? = 180' is a deep-water 
result, and the deepest stations used here for 2 February and 4 February are in only 
4 m depth. Similar calculations for data obtained in 18 m depth in a different 
experiment produced biphases of about /? = 170" (for frequency pairs comparable to 
those in figure 14). In  most of the cases investigated, the surf-beat biphase evolves 
toward lower values as the wave field shoals (figure 14). This evolution of surf-beat 
biphase observed in the field data is not predicted by the classic bound-long-wave 
model of Longuet-Higgins & Stewart (1962, 1964). The possibility of a breakdown 
of bound-wave theory because of shallow-water resonances was mentioned by those 
authors. 

4.3. Cross-bispectra 
As shown above (figure 13), at any particular location in the shoaling region, 
surf-beat-frequency energy is nonlinearly coupled to high-frequency modes located 
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FIQURE 15. Power spectra for 4 February. The bars indicate 95% confidence limits (d.0.f. = 350), 
and the significant wave height in 3.7 m depth is 88 cm. (a) h = 8.8 m, ( b )  3.7 m, (c) 1.7 m, (d )  0 m. 
(The data at h = 0 were obtained with a runup meter.) 

within the power-spectral peak. In  the breaking region, high-frequency energy 
(f > 0.04 Hz) is greatly reduced, while lower-frequency energy is increased, relative 
to their respective levels seaward of the surf zone. This is shown for data obtained 
4 February in figure 15 (see also figures 6 and 11) .  The shallowest sensor, figure 15d,  
is a runup meter and measures swash upon the beach face. It is of interest to know 
whether or not these very low-frequency surf-beat swash motions are coupled to  
high-frequency modes in deeper water. In order to investigate this question, 
cross-bispectra were calculated. The cross-bispectrum is defined here (similar to the 
auto-bispectrum (2.4)) as 

(4.4) 
where the A ,  are complex Fourier coefficients measured a t  one location and the A,  
are Fourier coefficients simultaneously measured at a different location. Other 
definitions of the cross-bispectrum may be obtained with different combinations of 
Fourier coefficients. For the present purposes, cross-bispectra for only a few frequency 
pairs will be considered. Specifically, the A ,  [(4.4)] are Fourier coefficients near the 
power-spectral-peak frequency, while the A ,  (observed in shallower water than the 
A , )  represent the small difference of the A ,  frequencies. As shown in figure 16, energy 
a t  neighbouring frequencies within the spectral peak measured seaward of the surf 

XfU, fz ,  = E[Az(f,) A,(f,) A X ,  + f z ) l ,  
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zone is nonlinearly coupled to low-frequency (the difference between the two 
high-frequency modes) motions within the surf zone. In  some cases, the cross- 
bicoherence increases substantially as the depth of the shallow sensor used in the 
calculations decreases (figure 16a; figure 16c shoreward of 4 m depth). Indeed, in 
these two cases (shoreward of 4 m  depth) the cross-bicoherence between deeper 
locations and the runup meter is higher than the auto-bicoherences (at the same 
frequencies) of the deeper sensors. On the other hand, the opposite trend is observed 
for the same data set as that shown in figure 16a, but for a slightly different set of 
frequencies, with a higher difference frequency, figure 16b. In this case, as the 
shallower sensor of the pair decreases in depth, the bicoherence also decreases, Note 
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that for the 2 February data (figure 16d) no runup meter was available, and the 
shallowest sensor is in about 1 m depth. 

It is clear from figure 16 that low-frequency motions in very shallow water, and 
on the beach face itself, are significantly nonlinearly coupled to higher-frequency 
modes (within the peak of the power spectrum) seaward of the surf zone. At the 
present time not much more can be said. There is no obvious trend in the values of 
cross-bicoherence as the shallower sensor decreases in depth (figure 16). Finer 
frequency resolution than is available with the present data (about 0.01 Hz) would 
be very useful. 

5. Conclusions 
The nonlinear evolution of shoaling ocean-surface gravity waves is particularly well 

suited for bispectral analysis. The development of harmonics as a wave field with a 
narrow-band energy spectrum shoals is clearly due to quadratic interactions between 
the power-spectral peak and its harmonics (figure 2). The same type of nonlinear 
interaction occurs among a wide range of frequencies when the shoaling wave field 
has a broad-band power spectrum (figure 7). Other similarities in the nonlinear 
evolution of narrow-band and broad-band power spectra are seen in the bispectrum. 
For example, the biphases of both data sets evolve from mostly random values in 
9 m  water depths to a value which is constant over most frequency pairs in the 
wind-wave band (0.04 < f < 0.4 Hz), approaching /3 = - in  as the waves shoal 
(figures 3 ,4  and 7). The biphase values associated with significant bicoherence levels 
in 9 m depth are consistent with Stokes-like nonlinearities (at least for narrow-band 
data). However, as the water depth decreases, the waves evolve through a slightly 
skewed, somewhat asymmetrical (with respect to a vertical axis) shape, toward a 
highly asymmetrical, unskewed, sawtooth-like shape (figures 5 , 8  and 9). The real and 
imaginary parts of the bispectrum are, respectively, the contributions to skewness 
and asymmetry from individual frequency pairs (figure 10). It is seen, figure 10 for 
example, that interactions involving low (surf-beat) frequencies tend to reduce 
sea-surface-elevation skewness and asymmetry. Bicoherence and biphase calculations 
provide evidence for excitation of Fourier modes via difference interactions as well 
as sum interactions for a data set with a double-peaked power spectrum (figure 11). 
Low-frequency motions (surf beat) are seen to be coupled to high-frequency energy 
located within the power-spectral peak (figure 13). These infragravity modes do not 
appear to be bound with a fixed phase relationship to the high-frequency wave groups 
since their biphases evolve as the wave field shoals (figure 14). Cross-bispectral 
calculations demonstrate that low-frequency motions on the beach face (swash) are 
nonlinearly coupled to higher-frequency (within the power-spectral peak) energy 
seaward of the surf zone (figure 16). Thus locally forced motions, as well as free 
(or nearly free) edge waves, contributed to the observed surf-beat-elevation field. A 
weakly nonlinear model (Freilich & Guza 1984) based on the Boussinesq equations 
for a sloping bottom (Peregrine 1967) accurately predicts the observed structural 
evolution of bicoherence and biphase (Elgar & Guza 19853). Since the nonlinear model 
assumes unidirectional, normally incident waves, the correspondence of observations 
and model results suggests that refractive narrowing of directional spectra does not 
contribute significantly to the increase in observed bicoherence as the wave field 
shoals. Although the nonlinear equations support solutions which are waves of nearly 
permanent form, the observed evolution of biphase is clearly inconsistent with waves 
of permanent form. Cnoidal wave solutions to the equations require specific initial 
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conditions (i.e. initial amplitudes and phases). These stringent requirements are not, 
in general, met in the present experiments, where power spectra are relatively broad- 
banded, and Fourier phases in 9 m water depth are not generally significantly 
different than randomly distributed. Numerical modelling of waves propagating over 
a shallow flat bottom indicates that the gross features of power-spectral (Freilich & 
Guza 1984) and bispectral evolution (Elgar & Guza 19853) are not primarily due to 
the sloping bottom, but are a direct consequence of the nonlinear interactions. 

Support was provided by a grant from the Foundation for Ocean Research (Steve 
Elgar) and by the Office of Naval Research, Coastal Sciences Branch, under contract 
number N0014-75-C-0300 (R. T. Guza). The d@a collection was supported by 
ONR and the Sea Grant Nearshore Sediment Transport Study (project number 
RICA-N-40). Dr E. B. Thornton played a central role in all phases of the 
experiments. R. L. Lowe was the principal engineer. Dr R. J. Seymour is thanked 
for encouragement, support, and helpful discussions during the course of this study. 

REFERENCES 

BARNETT, T. P., JOHNSON, L. C., NAITOH, P., HICKS, N. & NUTE, C. 1971 Bispectrum analysis 

BRILLINQER, D. R. 1965 An introduction to polyspectra. Ann. Math. Statist. 36, 1351-1374. 
BRILLINQER, D. R. & ROSENBLATT, M. 1967a Asymptotic theory of estimates of k-th order spectra. 

In Advanced Seminar on Spectral Analysis of Time Series (ed. B. Harris), pp. 153-188. Wiley. 
BRILLINQER, D. R. &, ROSENBLATT, M. 1967b Computation and interpretation of k-th order 

spectra. In Advanced Seminar on Spectral Analysis of Time Series (ed. B. Harris), pp. 189-232. 
Wiley. 

ELQAR, S. & GUZA, R. T. 1985a Shoaling gravity waves: comparisons between field observations, 
linear theory, and a nonlinear model. J. Fluid Mech. 158, 47-70. 

ELQAR, S. & GUZA, R. T. 1985b Nonlinear model predictions of shallow water gravity wave 
bispectra. Submitted to J. Fluid Mech. 

ELQAR, S., GUZA, R. T. & SEYMOUR, R. J. 1984 Groups of waves in shallow water. J. aeOphys. 
Res. 89, 3023-3634. 

FREILICH, M. H. & GUZA, R. T. Nonlinear effects on shoaling surface gravity waves. Phil. Trans. 
R .  SOC. Lond. A311, 1 4 1 .  

GABLE, C. G. (ed.) 1981 Report on data from the Nearshore Sediment Transport Study experiment 
a t  Leadbetter Beach, Santa Barbara, California, January-February, 1980. IMR Ref. 80-5., 
University of California., Inst. of Marine Resources, La Jolla, CA. 

GODFREY, M. D. 1965 An exploratory study of the bispectrum of economic time series. App2. 
Statist. 14, 48-69. 

GUZA, R. T. & THORNTON, E. B. 1985 Observations of surf beat. J. Geophys. Res. 90, 3161-3172. 
GUZA, R. T., THORNTON, E. B. & HOLBUN, R. A. 1984 Swash on steep and shallow beaches. In 

PTOC. 19th Coastal Enging Conf., pp. 708-723. Houston, Texas, American Society of Civil 
Engineers. 

HASSELMAN, K., MUNK, W. & MACDONALD, G. 1963 Bispectra of ocean waves. In Time Series 
Analysis (ed. M .  Rosenblatt), pp. 125-139. Wiley. 

HAUBRICH, R. A. 1965 Earth noises, 5 to 500 millicycles per second, 1. J. Qeophys. Res. 70, 
14 15-1 427. 

HELLAND, K. N., VAN ATTA, C. W. & STEQUN, G. N. 1977 Spectral energy transfer in high Reynolds 
number turbulence. J. Fluid Mech. 79, 337-359. 

HINICH, M. J. & CLAY, C. S. 1968 The application of the discrete Fourier transform in the 
estimation of power spectra, coherence, and bispectra of geophysical data. Rev. Geophys. 6, 

of electroencephalogram signals during waking and sleeping. Science 172, 401-402. 

347-363. 



440 S .  Elgar and R. T. Gum 

HUBER, P. J . ,  KLEINER, B., GASSER, T. & DUMERMATH, G. 1971 Statistical methods for 
investigating phase relations in stationary stochastic processes. IEEE Tram. Audio and 
Electroacoustics 19, 78-86. 

JENKINS, G. M. & WATTS, D. G. 1968 Spectral Analysis and its Applications. Holden-Day. 
KIM, Y.  C., BEALL, J. M., POWERS, E. J. & MIKSAD, R. W. 1980 Bispectrum and nonlinear wave 

KIM, Y. C. & POWERS, E. J. 1978 Digital bispectral analysis of self-excited fluctuation spectra. 

KIM, Y. C. & POWERS, E. J. 1979 Digital bispectral analysis and its application to nonlinear wave 

LII, K. S., ROSENBLATT, M. & VAN ATTA, C. 1976 Bispectral measurements in turbulence. J. fluid 

LONQUET-HIWINS, M, S. & STEWART, R. W. 1962 Radiation stress and mass transport in gravity 

LONQUET-HIQQINS, M. S. & STEWART, R. W. 1964 Radiation stresses in water waves; a physical 

MASUDA, A. & Kuo, Y. Y. 1981 A note on the imaginary part of bispectra. Deep-sea Res. 28, 

MCCOMAS, C .  H. & BRISCOE, M. G. 1980 Bispectra of internal waves. J. Fluid Mech. 97, 205-213. 
Mum, W. H. 1949 Surf beats. Trans. Am. Oeophye. Un. 30,849-854. 
PEREQRINE, D. H. 1967 Long waves on a beach. J. Fluid Mech, 27, 815-827. 
ROSENBLATT, M. & VAN NESS, J. W. 1965 Estimation of the bispectrum. Ann. Math. Statist. 36, 

112C1136. 
SATO, T., SASAKI, K. & TAKETANI, M. 1980 Bispectral passive velocimeter of a moving noisy 

machine. J. Accoust. SOC. Am. 68, 1729-1735. 
SUHAYDA, J .  N. 1972 Experimental study of the shoaling transformation of waves on a sloping 

bottom. Ph.D. dissertation, Scripps Institution of Oceanography, University of California, La 
Jolla, CA. 

SUHAYDA, J. N. 1974 Standing waves on beaches. J. Geophys. Res. 72, 3065-3071. 
VAN ATTA, C. W. 1979 Inertial range bispectra in turbulence. Phys. Fluids 22, 1440-1443. 
YEH, T. T. & VAN ATTA, C. W. 1973 Spectral transfer of scales and velocity fields in heated-grid 

coupling. Phys. Fluids 23, 250-263. 

Phys. Fluids 21, 1452-1453. 

interactions. IEEE Trans. Plasma Science 1, 120-131. 

Mech. 77, 45-62. 

waves, with application to ‘surf beats’. J. Fluid Mech. 13, 481-504. 

discussion with applications. Deep-sea Res. 11, 529-562. 

213-222. 

turbulence. J. Fluid Mech. 58. 233-261. 


